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Abstract

This paper describes a new message passing protocol that provides guaranteed detection of duplicate
messages even when the receiver has no state stored for the sender. It also discusses how to use these
messages to implement higher-level primitives such as at-most-once remote procedure calls and
sequenced bytestream protocols, and describes an implementation of at-most-once RPCs using our
method. Our performance measurements indicate that at-most-once RPCs can be provided at the same
cost as less desirable RPCs that do not guarantee at-most-once execution. Our method is based on the
assumption that clocks throughout the system are loosely synchronized. Modern clock synchronization
protocols provide good bounds on clock skew with high probability; our method depends on the bound for
performance but not for correctness.
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1. Introduction

In this paper we describe a new way of providing at-most-once delivery of messages. Our goal is to

detect duplicate messages with absolute reliability, while accepting messages most of the time even

when the receiving module has no state information stored about the sending module. The scheme is

interesting because it can be used as a building block for constructing higher-level protocols with

desirable performance characteristics. In particular, it can be used to implement at-most-once RPCs

efficiently, even in the case where a client communicales only once with each of many servers.

Our method allows messages to be sent without prior communication (e.g., to set up a connection), yet

it provides an absolute guarantee that duplicate messages will be detected. Our method is based on

loosely synchronized clocks; because it depends on synchronized clocks, we refer to our protocol as the

synchronized clock message protocol, or SCMP for short. Our protocol can easily tolerate the clock

skews provided by existing clock synchronization protocols [2]; ihese skews are typically less than 100

milliseconds, even in a wide area network. If the rare event of unsynchronized clocks does occur, the

protocol continues to work correctly, although there may be a degradation of performance.

The paper is organized as follows. In Section 2 we describe SCMP and show how it can be used to

guarantee at-most-once message delivery; we also discuss our clock requirements and system

performance. In Section 3 we discuss how SCMP can be used to provide higher-level primitives. In this

section we also describe an implementation of at-mont-once RPCs based on the SunRPC library [8],

present performance information for our implementation, and compare our performance with zero-or-more

and at-most-once RPCs already available in the SunRPC library. We conclude with a summary of what

we have accomplished.

2. At-most-once Message Delivery

Implementing at-most-once semantics is typically done by having each message receiver maintain a

table containing information about senders. When a message arrives, if there is information about the

sender in the table it is used to determine whether or not the message is a duplicate. If there is no

information, there are two choices: either accept the message or reject it. If the message is accepted,

there is a chance of accepting a duplicate. This chance can be made arbitrarily small by keeping

information about senders long enough. However, it is difficult to determine how long to keep this

information in the presence of sender retransmission and networks with probabilistic delay.
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The alternative of rejecting the message is safe; it guarantees that no duplicates will ever be accepted.

However, it gives rise to a problem. When a message is sent, we want to be reasonably certain that the

receiver will accept it. Therefore we need to know that the receiver has information about the sender in

its table. If it is unlikely to have such information, e.g., because this is the first time the sender has

communicated with it in a while, then it is necessary to set up the information before sending the

message. This can be done by means of a handshake in which a pair of messages is exchanged

between the sender and receiver in advance of the at-most-once message. If the sender then sends

many messages over the connection established by the handshake, the cost of the handshake can be

amortized across all of them. If there are only a few messages, the overhead is high relative to ue'l

work. In the worst case, the sender transmits only one message. Yet this case may be quite common; it

corresponds to an RPC client that performs a single operation at each of many servers.

The handshake between the sender and receiver could be avoided if there were a way for a receiver to

be sure a message was new in the absence of information about the sender. Our scheme allows this to

be done by using time. The idea is that the receiver remembers all "recent" communications. If a

message from a particular sender is "recent", the receiver will be able to compare it with the stored

information and decide accurately whether the message is a duplicate. If the message from the sender is

"old", it will be tagged as a duplicate even though it may not be, but this case is very unlikely. Thus the

system may occasionally mismark a non-duplicate but it will never erroneously accept a duplicate.

For such a scheme to work, receivers need to know whether a message is "recent". Our scheme

accomplishes this by means of loosely synchronized clocks. All nodes have clocks that (with very high

probability) differ by no more than some skew E. When a node sends an "at-most-once" message, it

timestamps the message with the current time of its clock. When the message arrives at the receiver, it is

considered recent if its timestamp is later than the receiver's local time minus a period p; otherwise it is

old. p is chosen to minimize the probability of erroneously discarding late messages as duplicates; it is

much larger than E. The characteristics of the bound p are discussed further in Section 2.4.

The remainder of this section discusses our protocol in more detail. As will be discussed in Section 3,

there may be other messages in the system as well, e.g., unreliable datagrams. We do not consider such

messages here; in the remainder of this section, "message" will always mean an "at-most-once"

message.
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2.1. The Model and Assumptions

We are interested in a distributed collection of nodes connected by a network. All nodes can

communicate with one another by sending messages on the network. Although the network might be a

local area net, we are concerned here with the more general case of a geographically distributed net such

as the Internet. Nodes may fail by crashing. The network may lose or duplicate messages, or deliver

them late or out of order; in addition it may partition so that some nodes are unable to send messages to

some other nodes temporarily. We assume these failures are not Byzantine [6]; for example, we assume

that the network will not deliver corrupted messages.

A program running on the network consists of a collection of modules, each of which resides entirely on

a single node. Some modules are servers and others are clients (some modules are both servers and

clients). Clients send messages to servers to request some service; servers accept such messages,

carry out the request, and sometimes return a response in a messag9 to the client. The exact form of a

module is not of interest to us. In some systems, a module is limited to doing one thing at a time; other

systems support concurrency within a module. Our mechanism supports both kinds of systems.

Some servers are resilient they survive tailures of their node. Resilience requires access to a non-

volatile storage medium. The storage need not be located at the server's node; instead it could be

provided over the network by a stable storage service [7].

Every node has a clock. As mentioned, we assume that the nodes' clocks are loosely synchronized

with some skew .; nodes ensure this by carrying out a clock synchronization protocol periodically. At

least one practical clock synchronization protocol exists [2]. It synchronizes clocks of nodes on a

geographically distributed network so that clocks are guaranteed with very high probability to have a skew

of less than a hundred milliseconds. The protocol does this at low cost and low overhead (each node

exchanges a pair of messages with three other nodes every four minutes). Synchronized clocks are

useful for other purposes than ours, e.g., for authentication [4] and for capabilities that expire. Therefore,

our protocol is merely another client of a service used by many parts of a system.
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2.2. The SCMP Protocol

Every module G has a current time, G.time; this is read from the clock belonging to its node. Every

message m contains a timestamp, m.ts; this is G.time of the sending module at the time m is created.

Even though a particular message may be duplicated either by the network or by the software that carries

out a higher-level protocol, all instances of the message will contain the same m.ts.

Each message also contains a connection identifier, m.conn. However, as opposed to other

connection-based systems, this connection identifier is selected by the client without consultation with the

server. If a client has only one outstanding message to a server at a time, its unique module identifier can

serve as the connection identifier. If it has many unrelated outstanding messages, it should have a

separate connection for each; this could happen, for example, in a client that runs multiple concurrent

threads. Thus in general a connection identifier Is a pair <module id, uld> where the uid is unique relative

to the module identifier of the client; the size of the uid field depends on how many outstanding messages

a system allows between a client and server. Note that a client can freely reuse connection ids; distinct

ones are needed only when concurrent communication with the same server is occurring.

The connection id and the timestamp in the message together constitute a unique message Id,

provided that the timestamps of all messages sent on that connection are distinct. Timestamps should

have fairly fine granularity (e.g., one millisecond) so that clients can send messages frequently. if the

clock at a client has coarser granularity than the timestamp granularity, the client can maintain a counter

for use as the low bits of the timestamp when necessary, e.g., if it attempts to send multiple messages

within one tick of its clock.

Each server maintains a connection table, G.CT This is a mapping from connection ids to connection

information. For the discussion in this section, the only connection information of interest is the

timestamp of the last message accepted on that connection. Not all connections have an entry in G.CT.

G is free to remove an entry for connection C from its connection table provided G.CTTC].ts < G.time - p.

Here, p is the interval mentioned above during which we retain connection information; see Section 2.4

for further discussion.

A server also maintains an upper bound, G.upper, on the timestamps that have been removed from the

table. Since only old timestamps are removed from the table, G.upper < G.time - p.
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Figure 2-1 describes the processing at servers that do not survive crashes (resilient servers are

described below). The algorithm works by determining a per-connection bound that distinguishes "new"

from "old", or potentially duplicate, messages, and comparing the timestamp of the newly arrived

message with that bound. If the message's connection has an entry in the table G.CT, the bound is the

timestamp of the most recent previously accepted message. If there is no table entry, the global bound

G.upper is used. G.upper is an appropriate bound because if there is no information for the connection in

G.CT, this means the last message on the connection (if any) contained a timestamp t s G.upper.

Therefore, if a message arrives whose timestamp is later than this, it must be a new message. Since

G.upper _ G.time - p and since p is large enough that the client message is highly likely to arrive within

that interval, we rule out (with high probability) the chance of incorrectly flagging a message as a

duplicate.

Initialization.
When a server G is first created, its connection table is empty
and G.upper is set to the minimum of zero and G.time - p.

Processing of Message m by Server G.
1. If there is an entry for m.conn in G.CT then

a. if m.ts < G.C'(m.connj.ts, flag the message as a duplicate
b. else accept the message and set G.CT[m.conn].ts to m.ts.

2. Otherwise,
a. if m.ts _ G.upper, flag the message as a duplicate
b. else accept the message and store m.ts in G.CT[m.conn].ts.

Garbage Collection.
Periodically, the server G removes entries from G.CT. Only entries with
timestamps G.time - p are removed. Then Gupper is set to the
maximum of its former value and the timestamps of the removed entries.

Figure 2-1: Processing at a Non-resilient Server.

For servers that survive crashes, we need a way of recognizing a message that arrives after crash

recovery if it Is a duplicate of a message that arrived before the crash. Of course we could accomplish

this by keeping connection information in stable storage [51 but this would be very inefficient. 1 If the

connection table does not survive the crash, we need a way of effectively reinitializing it after a crash.

This requires establishing an estimate of the timestamp of the latest message that may have been

1We consider here only crashes in which volatile memory is lost If A,,,p vnlatile memory survives, the conr - ., table Qould be
kept there, and the server crash would have no effect on our algorithm. We conjecture that wholesale discarding of information in
volatile memory after a crash will become less common in the future as interest in fault-tolerant systems grows.
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received before the crash. The idea is that before the crash no message whose timestarnp was greater

than the estimate was accepted. Therefore, any message after the crash whose timestamp is greater

than the estimate is not a duplicate and can be accepted. Messages with timestamps less than or equal

to the estimate might be duplicates, so they must be flagged as such.

Thus our plan is the following:
1. Before the crash we must ensure that all accepted messages have timestamps less than

the estimate that will be established should a crash occur. This means we must enforce an
upper bound on the timestamps of accepted messages. We will refer to this bound as
G.latest.

2. After a crash we establish the estimate and use it to initialize G.upper.

The full algorithm carried out by a resilient server is given in Figure 2-2. In step 1 of message

processing, we need not discard a message that arrives too early; instead we can just delay processing of

such a message. G.latest is established as follows: Periodically a server writes G.time + 0 to stable

storage; G.latest is the most recent value written to stable storage. 0 is some increment that ensures that

we are unlikely to reject (or delay) messages as arriving too early; it would be based on the clock skew E,

the time required to write to stable storage, and the frequency of writing. Stable storage need only be

written infrequently, for example, once every few seconds In the background, so this work will not cause

much of a drain on the server. For many persistent servers, G.latest can simply be written to stable

storage as part of the records that are being written there anyway to record information about the server's

persistent state.

If the server's clock is known to be monotonic, an alternative algorithm is possible. During normal

processing, the server treats messages as too early if m.ts > G.tie + e, rather than keeping a separate

value for G.latest. When restarting after a crash, the server refuses all messages for a period of c, then

sets G.upper to G.time and begins normal processing. This alternative eliminates the need for stable

storage, but will erroneously reject a large number of messages immediately after a crash.

2.3. Correctness

The following brief argument should convince the reader that SCMP properly detects duplicates.

Suppose H sends a message m to G on connection C and assume G receives multiple copies of m. We

need to show that only one copy is accepted. Consider two copies of m and suppose the earlier is

accepted. We show that the later is flagged as a duplicate. This suffices to show that at most one copy

of a message Is accepted.



7

InltlUatlon.

When a server G is first created, its connection table is empty and
G.upper is set to the minimum of zero and G.time - p. G.time +
is written to stable storage and G-latest is set to this value.

Processing of message m by server G.
1. If m.ts > G.latest, refuse the message since it is too early.

2 If there is an entry for m.conn in G.CT then
a. if m.ts < G.CT[m.conn].ts, flag the message as a duplicate
b. else accept the message and set G.CT[m.conn].ts to m.ts.

3. Otherwise,
a. if m.ts < G.upper, flag the message as a duplicate
b. else accept the message and store m.ts in G.CT[m.conn].ts.

Maintaining Latest.
Periodically G writes G.time + 0 to stable storage and
then sets G.latest to this value.

Garbage Collection.
Periodically, the server G removes entries from G.CT. Only entries with
timestamps < G.time - p are removed. Then G.upper is set to the
maximum of its former value and the timestamps of the removed entries.

Crash Recovery.
Initialize G.upper to be the value of G.latest on stable storage.
Establish a new G.latest for use in accepting further messages.
The connection table is empty.

Figure 2-2: Processing at a Resilient Server.

We distinguish between the case where G does not crash between receiving the two copies and the

case where it does crash. In the first case, if there is an entry G.CT[C] when the later copy is received it

will be flagged as a duplicate by rule 2a. Otherwise, by rule 2b or 3b, an entry containing the value m.ts

must have been created when the earlier copy of m was accepted. Since this entry no longer exists it

must have been discarded, and when it was discarded, G.upper was adjusted such that m.ts < G.upper.

Therefore, rule 3a causes the later copy to be flagged as a duplicate.

Now consider the case when G crashes after the earlier copy is received. By rule 1, we know that m.ts

was less than or equal to G.latest at the time the earlier copy was accepted. Because of the way G.latest

is computed and the way G.upper is initialized after a crash, we know that

G.laietprxw < G.upperpotcrash

for all values of G.latest that existed before the crash. Therefore, if the second copy arrives after the

crash, it will be flagged as a duplicate by rule 3a since m.ts ! G.upper.
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Clock synchronization is used in the protocol to establish a system-wide notion of "recent", which is

used to delete connection information from the table, and as a consequence to flag incoming messages

as possible duplicates. The correctness of the protocol does not depend on clock synchronization but its

performance does. If clocks are synchronized, only very late messages will actually be flagged as

duplicates; otherwise, recent messages may be flagged in this way. If G's clock is slow, G's messages

are more likely to be flagged as duplicates by other modules; also G may refuse (or delay accepting)

other modulps' messages (since they are "too early") and G may maintain connection information that is

out of date. If G's clock is fast, it is more likely to flag messages from other modules as duplicates and its

messages may be refused or delayed as "too early". Thus, in either case no duplicate messages are

accepted, but performance suffers because there is extra flagging of duplicate messages and some

out-of-date connection information may be kept in connection tables.

The correctness of the protocol also does not depend on the monotonicity of clocks (in the scheme in

which G.latest is kept on stable storage). If a node's clock runs backwards, the only effect is that

messages are likely to be flagged as duplicates. A resilient server must be careful to ensure that the

value of G.uppei after a crash is greater than any G.latest before the crash, but this is easy to do. The

server merely ensures that the value of G.latest on stable storage is monotonic. The only time

monotonicity might be violated is if stable storage fails. But in this case, the server will have failed

catastrophically since it has lost its persistent state.

2.4. Performance

The parameter p determines the time during which a message will be considered recent, and

consequently the length of time information must be retained in the receiver's connection table. Selection

of a value for p requires a compromise between the performance penalties associated with overly large

connection tables and the probability of erroneously marking messages as duplicates.

The size of a receivers connection table is determined by the number of recently active senders (which

cause entries to be added to the table) and the value of p (which determines when entries may be

removed from the table). Often, p can be made quite large with no noticeable penalty. When resources

are limited, it is desirable to limit p to keep table memory usage, paging overhead, and search time as low

as possible. This is particularly true when higher level protocols are also storing information in the

connection table, leading to larger entries. However, making p too small will reduce performance. We
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consider here the determination of an appropriate minimum value for p.

We assume that the user of SCMP (e.g., a higher-level protocol such as RPC) requires that messages

from the sender be delivered to the receiver with a probability Preq. We further assume a network that,

when handed a datagram, will deliver at least one copy of it with probability Pnet in time 8 or less. If the

raw network does not provide adequately reliable service, the higher-level protocol must implement an

error recovery strategy involving retransmission of failed datagrams. 2

The SCMP algorithm puts a bound on the time available to convey a sender's message to the recipient.

If the message has not been delivered successfully by Ttransmit + p, it might be flagged as a duplicate by

the receiver. The minimum value for p is thus the time necessary to deliver at least one copy of the

sender's message with probability of Preq, plus an adjustment for clock skew. This value is determined by

the characteristics of the network and the error recovery algorithm of the higher level protocol.

This determination is particularly simple when Pnet Preq. Here the sender will never need to

retransmit a message. p can be based entirely on 8, the delay of a single datagram in the network, and

on E, and the simple bound p > E + 8 holds.

When Pnet< Pr", the sender may have to retransmit the message to achieve the desired reliability. If

the sender might need to retransmit the message up to N times, a bound on p is given by p > E + 8 +

RT(N), where RT(N) is the time from when the message was first sent to the time the Nth retransmission

is sent.

A point to notice is that the server has control of the value of p and in fact can use different ps for

different classes of clients. For example, if a server is able to classify clients based on the characteristics

of the underlying communication path (e.g., using information in the client ID), it could use larger ps for

clients on slower or less reliable paths and smaller ps for clients on better paths; it would need to maintain

a different G.upper for each category. This strategy grants clients on low quality or long delay paths the

extra time needed to reliably transmit a message, while minimizing the unnecessary use of resources by

clients with better communication.

The above analysis considers only transient failures in the network. Some protocols support recovery

2Note that btis analysis does not depend on the metodof triggering retransmission, e.g., negative acknowledgment or timeout.
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from long-term network partition, recipient node failure, and other statistically unlikely events by allowing

the sender to retransmit indefinitely, until communication is reestablished. This approach does not always

work with SCMP-based protocols, because after a time retransmitted messages may become too old and

will not be accepted by the receiver. When such a message is rejected, a higher level failure recovery

mechanism must be used. We are explicitly trading simplicity in the common case (no handshaking on

normal connection startup) for somewhat more complexity in the unusual case of a long term failure.

In fact, however, the algorithm performs well in the case of a receiver crash. We would like to accept

as many messages as possible after the restart, even those older than G.time - p. The reason for this is

that p is based only on the expected delay in delivering messages in the absence of a long-term failure.

Things are different when the receiver has crashed; the sender might keep trying to send the message for

a period much longer than p.

If the crash duration is very brief, many of these messages will have timestamps less than t0r, the time

at which the crash occurred. Here storing G.latest on stable storage is not much help, since G.latest will

usually be greater than or equal to to.. We would be able to accept such messages only by having the

missing connection table information.

Typically, however, crashes last a long time relative to the length of time senders remain interested in

messages. Therefore a much more likely case is that all messages of interest have timestamps

substantially greater than ta. For such crashes, our scheme of reinitializing G.upper from the G.latest

stored on stable storage periodically will allow us to accept virtually all messages of interest. In particular,

even in the worst case we will accept all messages sent after t., + 0.

To ensure that the algorithm works property immediately after a restart, it is necessary to avoid

removing entries from the table until sufficient time has passed to process all pending messages.

Otherwise, if a message with a recent timestamp is removed, G.upper will be adjusted upwards, and

messages with older timestamps will no longer be accepted.

We can reduce the number of unnecessary message rejections caused by a crash by increasing the

frequency with which we write to stable storage and the amount of information we write. We are again

encountering here the common tradeoff between optimizing for the normal case and for recovery. We

chose a method that has essentially no impact on normal case behavior, since writing to disk every few
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seconds is not much of a drain, and could even be combined with other information that the server must

write. The alternative is to write all information in the connection table to stable storage; this would

ensure that the crash causes no erroneous rejections, but would slow down normal processing

substantially.

2.5. Comparison with Delta-t

The Delta-t protocol [31 also implements at-most-once messages without requiring connection setup. It

works by defining a system-wide bound on the length of time a message can remain in transit. Each

message initially contains this bound as one of its fields. When a switching node within the network

receives a message, it records the current value of its clock. When the message is about to leave the

switching node, the node decrements the bound field by its current time minus the recorded arrival time.

If the result is negative, it discards the message. Otherwise, it forwards the message with the

decremented bound. Servers maintain information about a received message until the remaining transit

time for the message has expired. The server does not check for duplicates after this point because they

are assumed to be discarded by the switching nodes. Note that Deta-t relies on a property closely

related to clock synchronization, since it requires that the clocks of all switching nodes run at the same

rate.

We believe our protocol is preferable to Delta-t for several reasons.
1. Our protocol Is end-to-end; Delta-t is not. We can make do with very simple switching

nodes. The switching nodes in Delta-t must be more complicated since they must carry out
the protocol.

2. Deta-t assumes that all message delays are caused by the switching nodes, but this is not
necessarily true. The links in some networks are slow. Furthermore, it may not be possible
for a switching node to simulate the delay on a link because some links have a variable
delay, e.g., when there are bridges. (By convention, bridges run a low-level protocol that
does not examine the content of messages.)

3. Delta-t requires a global, system-wide bound that must be established in advance and is
difficult to change. We do not rely on such a bound; although p may appear to be a
system-wide bound, in fact each server can choose a value for p independently, as was
discussed in Section 2.4.

4. We do not depend on synchronization for correctness, Delta-t does. Its protocol will fail if
the rates vary by too much, since then there is a chance of a duplicate arriving at a server
after information about the earlier copy of the message has been discarded.
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3. Higher-Level Protocols

In this section, we discuss how SCMP can be used to implement higher level protocols. The SCMP

protocol can be viewed as a filter that receives messages from a network and passes them up to a higher

level tagged as either *new" or "duplicate". Higher level protocols use new messages to initiate actions

such as establishing a connection in TCP or starting an RPC call. They may either discard duplicate

messages, or may use them to initiate a recovery action, such as retransmitting a result or sending an

acknowledgment.

As mentioned earlier, our at-most-once messages are not intended to replace other low-level

communication primitives. Instead, we assume that there are also unreliable datagrams or some similar

primitive. Higher-level communication primitives are implemented out of a combination of datagrams and

at-most-once messages. Typically, at-most-once messages are used to start the protocol associated with

a higher-level primitive; the remainder of the protocol makes use of datagrams. Thus the RPC protocol

discussed below uses an at-most-once message for the (first part of the) call; the reply and control

messages are sent using UDP [10]. Similarly, we could implement connection-based protocols like

TCP [9] by having the first message from the client to the server be an at-most-once message; all other

messages would be datagrams. This would allow us to piggyback the connection setup on the first

message to be exchanged over the connection. The client could choose the connection id, and all

messages on the connection would contain this id. In addition, messages on the connection would be

distinguished by sequence number in the usual way.

When initializing a streaming protocol in this fashion, the client may wish to send several messages in

the sequence before receiving the initial reply from the server. It is important in this case that the SCMP

algorithm be applied only to the first message in the sequence. The reason for this is that SCMP is

sensitive to message reordering; if two SCMP messages sent on the same connection are received in

reverse order, acceptance of the second message will cause the first message to be rejected as a

duplicate when it arrives.

The use of SCMP is most interesting when the client uses a connection very little, since in this case we

gain the most from avoiding extra messages for connection setup. RPC is an example of this kind of

communication, especially in the case where clients call servers only occasionally. Below we present an

implementation of at-most-once RPC using SCMP and then compare our implementation with that of

Birrell and Nelson [1]. At-most-once semantics for RPCs means that a call is guaranteed to be executed
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at most once even when failures occur such as a crash of the receiving module; it is desirable because it

provides proper semantics even when calls are not idempotent.

3.1. An Example: At-most-once RPC Implementation

We have added an SCMP based at-most-once RPC implementation to the widely used SunRPC

library [8], which currently supports UDP and TCP based RPC protocols. Sun's UDP-based protocol

provides zero-or-more semantics, which gives only weak guarantees about how many times a call is

executed: even when a call terminates normally, it may have been executed more than once. Sun's

TCP-based protocol provides at-most-once when there are no crashes; in the case of a crash, however, j

call can be run more than once. Our protocol provides at-most-once semantics even across crashes.

Measurements indicate that we can provide at-most-once semantics at about the same cost as the UDP-

based SunRPC, and with significantly better performance than the TCP-based SunRPC in the case of

clients calling servers occasionally.

Our at-most-once RPC provides reliable delivery: a client can depend on the protocol to deliver the call

message provided the server is accessible to the client, and similarly we guarantee to deliver the reply. It

is implemented by using an at-most-once message for the call message, and UDP datagrams for the

reply and control messages. This protocol is optimized for the common case of mostly-reliable networks

and heavily loaded servers.3 Since SunRPC modules are single-threaded, we use a connection identifier

consisting simply of a unique identifier for the client; the client uid and timestamp provide the unique call

id. We support only calls that fit in a single UDP message. However, these messages can contain up to

64K bytes.

The client makes an RPC by sending a CALL message to the server. When the call has been

executed, results are returned to the client in a REPLY message. When there are no failures, only these

two messages are needed for an RPC that does not take long for a server to execute, although the client

may optionally send a REPLY-ACK message as a hint to the server. To ensure reliability, clients

retransmit CALL messages on a periodic basis; the server responds with an ACK message if it receives a

duplicate call. (If the client learns from such an ack that the server has received the CALL message,

subsequent retransmissons send a truncated message that contains only the connection and call ids.) If

several retransmissions have occurred without a response from the server, the client times out the call.

31n otr situadons, different choices would be bettm than ours. The result would be a family of RPC protocos.
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The server maintains state for each active connection in a connection table. Each table entry contains:

" The server state for this connection, one of IDLE, COMPUTING or REPLYING.

" A message timestamp, which records the timestamp in the most recently received CALL
message.

" If the state of the connection is REPLYING, the server's reply to the most recently processed
call and a reply timestamp, which records the time the reply was first transmitted.

Processing on the server side is described by Figure 3-1. The server starts performing a call when a

CALL message tagged as new by the SCMP algorithm is received from a client. While the server is

performing the call, duplicate CALL messages trigger the transmission of an ACK message to the client.

When the server completes the call, it sends the results to the client in a REPLY message, and saves

them in its connection table. If the server receives a duplicate CALL message at this point, it retransmits

the reply. If a new CALL message is received, the server discards any stored reply and begins

processing the new call. If a REPLY-ACK message is received, the stored reply is discarded, and the

connection returns to the IDLE state.

Periodically the server connection table is garbage collected. COMPUTING connection entries are

never deleted. IDLE and REPLYING connection entries may be deleted whenever the reply timestamp is

older than G.time - p', depending on how full the table is. Here p' is chosen to be the maximum of two

values, the period p specified by the SCMP algorithm, and a constant K selected to ensure a high

probability of the client receiving the reply if it is still interested in the result. We use a value of five

minutes for both p and K, based on the characteristics of our client retransmission algorithm and the

nominal value of two minutes for 8 in the internet protocol suite. Note that G.upper is set using the client's

call time, not the reply time, since our only concern is recognizing duplicates of the call. Since we do not

remove connection table entries unless the table is almost full, we retain them for a long period after

recovering from a crash. This provides us with a sufficient period to accept any pending messages as

discussed in Section 2.4.

We compared the performance of our RPC protocol with both UDP and TCP-based protocols by

running two experiments. Our measurements were obtained by making null calls between server and

client modules running on DEC MicroVax 3 processors under Berkeley Unix 4.3. The nodes were

connected by an Ethernet. Our first experiment compared the performance of the three RPC

mechanisms while performing a sequence of 1000 calls from a single client to a single server. The

results are presented in Figure 3-2, which shows results obtained from three different runs for each
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Initialization and Crash Recovery
(Re)Initialize SCMP algorithm as in Figure 2-2. The connection
table CT is empty.

Process Incoming CALL Messages
1. Apply SCMP algorithm to message, tagging it as NEW or DUPLICATE. If message

is NEW and there is no connection table entry, one is created by SCMP.

2. If message is NEW:
discard stored reply, if any.
set connection state to COMPUTING.
begin user-level computation of results.

3. Otherwise (message is DUPLICATE):
if no connection table entry, ignore message.
if state is COMPUTING, send ACK.
if state is REPLYING, retransmit stored reply.

Process completion of user-level computation
Transmit REPLY message to client.
Set state to REPLYING.
Store results and G.time in connection table entry

Process Incoming REPLY-ACK messages
Delete stored reply information, if any.
Set state to IDLE.

Garbage collection
Examine each entry e in the connection table:
1. If state is COMPUTING, do nothing.

2. If state is IDLE or REPLYING, discard the entry if e.reply_time < G.time - p'.
Set G.upper to the maximum of its former value and e.msgtimestamp
of the removed entry.

Figure 3-1: RPC Server Processing

protocol. The data were obtained at times when the load on the network was low. As can be seen,

SCMP-based RPC performs comparably to UDP-based RPC, and better than TCP-based RPC. This

experiment shows that our protocol does not impose any significant overhead cost over UDP in the case

where a client makes many calls to the same server.

Our second experiment compared the performance of the protocols while performing calls from a

thousand different clients to the same server; in this experiment each client made exactly one call to the

server. This experiment simulates the situation of interest: a system of many clients and servers, where

clients talk to servers only occasionally. The results are shown in Figure 3-3. In this case we can see

that the cost of our protocol remains similar to the UDP-based RPC, but the cost of the TCP-based RPC
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Figure 3-3: Performance when Clients Make Occasional Calls to a Server.

3.2. Comparison with Birrell and Nelson's RPCs
The RPC implementation of Birrell and Nelson il] is a simple mechanism that (almost) supports at-

most-once semantics. We compare our method with theirs below. We also discuss how SCMP can be
used with their method to provide truly at-most-once semantics.

A call message in the Birrell and Nelson mechanism contains a client ud, a sequence number, and an
"incarnation number" for the server. The client uld and sequence number together constitute the unique
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call id; each succeeding call must have a larger sequence number. When the server has performed a

call, it sends a reply message to the client. The client must then send an acknowledgment message for

the reply to the server. The next call can serve as this ack; if there is no next call, an explicit ack is

needed.

A server maintains a connection table that stores the sequence number of the most recent call from a

client, and also the reply message for the last call until it is ack'd. When an explicit ack arrives, the

connection becomes "idle". Information about an idle connection is retained for some period of time a

chosen to be substantially larger than the maximum expected delay in the network. Provided a client

never sends a call message after it has sent an ack for that call, it is highly unlikely that a duplicate call

message will be received after the connection information is discarded.

When a call message arrives at a server, the following occurs 4 :

1. The incarnation number in the message is checked against the server's number; if they do
not match, the message is rejected.

2. If the server's connection table contains an entry for the client, the message's sequence
number is compared with that in the table. If the message's number is greater than that in
the table, it is accepted and its number stored in the table; otherwise it is rejected.

3. If there is no entry in the table, the message is accepted. An entry is created for the client
and the message's sequence number is stored in it.

The incarnation number in the message will match that at the server provided the server has not

crashed (and recovered) since the client obtained the incarnation number (by "binding" to the server). In

this case, the client's message will be accepted unless information in the table indicates that it is old.

When the incarnation numbers match, the protocol does not accept duplicates provided the network

never delivers late messages; otherwise, the message accepted in step 3 may be a duplicate. As

mentioned, for some networks (e.g., local area networks) there can be no late messages; however, for

wide area networks, late messages are possible, although rare.

Our protocol does not use incarnation counts and does not require the initial handshake needed by the

Birrell and Nelson protocol to obtain an incarnation number before communicating with a server. A

handshake Is sometimes anyway as part of a higher-level binding step, but our protocol avoids this

overhead when binding is not required, as in the case of well-known servers or messages forwarded

through a well-known address.

4This description is simplified. For example, we ignore client retransmissions.
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In the absence of crashes, both protocols have problems with late messages. However, they fail in

different ways: our protocol fails by rejecting a possible nonduplicate, while theirs fails by accepting a

possible duplicate.

Now we consider the case of crashes. The Birrell and Nelson protocol guarantees that crashes will not

lead to duplicate messages being accepted. However, it does so at the cost of a handshake: the client

must exchange messages to obtain the correct incarnation id before sending the call. Our mechanism

also does not accept duplicates across crashes, but does not require the handshake. Both systems will

reject non-duplicates. However, we will reject fewer messages: only those messages that were sent at

approximately the time of the crash are rejected. By contrast, Birrell and Nelson will reject recent

messages too.

An alternative to our implementation is to use the SCMP algorithm within the Birrell and Nelson method

to provide fail safe behavior. This is accomplished by timestamping their call and ack messages; the

timestamp would be included in these messages as a separate field. Each time the client sends a call or

ack, it puts its current time in the message; thus call messages for the same RPC would contain different

timestamps. When an ack is received, its timestamp is stored in the connection table entry. The entry can

be removed, and G.upper updated, after a time period approximately equal to the maximum expected

delay in the network. Call messages on connections without an entry in the table are rejected according

to our algorithm. No duplicates will be accepted with this method provided the timestamps in call

messages for an RPC are always less that those of acks for that RPC or call messages for later RPCs.

This approach still requires incarnation numbers, but has the advantage that clients can retry calls

indefinitely until a server responds, which would be helpful, for example, in the case of a long lasting

partition.

4. Conclusions
This paper has shown how to implement at-most-once message delivery without connection setup by

using loosely-synchronized clocks. The method is fail safe: it never delivers a duplicate message. It may

incorrectly reject a non-duplicate, but this in highly unlikely, even when there are node crashes. The

protocol Is superior to the Delta-t protocol because it is an end-to-end method that can make use of

simple switching nodes, does not require a global bound on message delay, and is fail safe.

We also discussed how at-most-once messages can be used to implement high-level communication
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primitives, and described such an implementation for at-most-once RPCs based on the SunRPC library.

Our performance data indicate that we can provide at-most-once RPCs at the same cost as zero-or-more

RPCs. Our method outperforms at-most-once RPCs based on protocols such as TCP that use extra

communication to establish connections, especially in the case where clients talk to servers only

occasionally.

Our method relies on clock synchronization. We believe that systems of the future will provide

synchronized clocks since they are useful for many different reasons; our protocol is just another client of

this service. Existing clock synchronization protocols guarantee with very high probability a clock skew of

less than a hundred milliseconds even in a wide area network, and they do so at low cost. Since the

synchronization guarantee is probabilistic, it is better not to rely on it for correctness, however. The

correctness of our scheme does not depend on clocks being synchronized. We do depend on

synchronization for good performance; this is a comfortable assumption because of the high probabilities.
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